Statistical mechanics of fluidized granular media: short-range velocity correlations.

نویسندگان

  • R Soto
  • M Mareschal
چکیده

A statistical mechanical study of fluidized granular media is presented. Using a special energy injection mechanism, homogeneous fluidized stationary states are obtained. Molecular dynamics simulations and theoretical analysis of the inelastic hard-disk model show that there is a large asymmetry in the two-particle distribution function between pairs that approach and separate. Large velocity correlations appear in the postcollisional states due to the dissipative character of the collision rule. These correlations can be well-characterized by a state dependent pair correlation function at contact. It is also found that velocity correlations are present for pairs that are about to collide. Particles arrive at collisions with a higher probability that their velocities are parallel rather than antiparallel. These dynamical correlations lead to a decrease of the pressure and of the collision frequency as compared to their Enskog values. A phenomenological modified equation of state is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Velocity distributions and correlations in homogeneously heated granular media.

We compare the steady state velocity distributions from our three-dimensional inelastic hard sphere molecular dynamics simulation for homogeneously heated granular media, with the predictions of a mean field-type Enskog-Boltzmann equation for inelastic hard spheres [T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998)]. Although we find qualitative agreement for all values of densit...

متن کامل

Study of granular temperature in dense fluidized beds by diffusing wave spectroscopy

Diffusing wave spectroscopy (DWS), a non-intrusive multiple scattering technique, can be used to study the fundamentals of particle motion in dynamic dense granular media and measure the mean of the square of the particle velocity fluctuations about their mean, which is related directly to the so-called 'granular temperature' that underpins many theories for dynamic granular processes. An overv...

متن کامل

An invariant distribution in static granular media

We have discovered an invariant distribution for local packing configurations in static granular media. This distribution holds in experiments for packing fractions covering most of the range from random loose packed to random close packed, for bead packs prepared both in air and in water. Assuming only that there exist elementary cells in which the system volume is subdivided, we derive from s...

متن کامل

Velocity Correlations in Driven Two-dimensional Granular Media 1

Simulations of volumetrically forced granular media in two dimensions produce states with nearly homogeneous density. In these states, long-range velocity correlations with a characteristic vortex structure develop; given sufficient time, the correlations fill the entire simulated area. These velocity correlations reduce the rate and violence of collisions, so that pressure is smaller for drive...

متن کامل

Clustering and fluidization in a one-dimensional granular system: molecular dynamics and direct-simulation Monte Carlo method.

We study a one-dimensional granular gas of pointlike particles not subject to gravity between two walls at temperatures T(left) and T(right). The system exhibits two distinct regimes, depending on the normalized temperature difference Delta=(T(right)-T(left))/(T(right)+T(left)): one completely fluidized and one in which a cluster coexists with the fluidized gas. When Delta is above a certain th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001